This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Reaction of Benzyltrimethylammonium Phenylenedioxy Tetrachlorophosphorate with Phenylacetylene and Propargyl Chloride

Alfiya A. Shtyrlina^a; Vladimir F. Mironov^a; Elena N. Varaksina^a; Aleksander I. Konovalov^a
^a A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Russia

Online publication date: 27 October 2010

To cite this Article Shtyrlina, Alfiya A., Mironov, Vladimir F., Varaksina, Elena N. and Konovalov, Aleksander I.(2002) 'Reaction of Benzyltrimethylammonium Phenylenedioxy Tetrachlorophosphorate with Phenylacetylene and Propargyl Chloride', Phosphorus, Sulfur, and Silicon and the Related Elements, 177: 8, 2031 — 2032

To link to this Article: DOI: 10.1080/10426500213423 URL: http://dx.doi.org/10.1080/10426500213423

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur and Silicon, 2002, Vol. 177:2031–2032 Copyright © 2002 Taylor & Francis 1042-6507/02 \$12.00 + .00

DOI: 10.1080/10426500290094558

REACTION OF BENZYLTRIMETHYLAMMONIUM PHENYLENEDIOXY TETRACHLOROPHOSPHORATE WITH PHENYLACETYLENE AND PROPARGYL CHLORIDE

Alfiya A. Shtyrlina, Vladimir F. Mironov, Elena N. Varaksina, and Aleksander I. Konovalov

A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Russia

(Received July 29, 2001; accepted December 25, 2001)

The interaction of phenylenedioxytrichlorophosphorane 1 with benzyltrimethylammonium chloride 2 gives the hexacoordinated derivative 3 $(\delta_P - 97 \text{ ppm})$, which easily reacts (20°C, CH₂Cl₂) with phenylacetylene or propargylchloride and leads to the preferable formation (70–80%) of the substituted 2,7-dichloro-4-R-2-oxobenzo[e]-1,2-oxaphosphorines **4**. The selective chlorination of the benzo-substituent *meta* to endocyclic oxygen of the phosphorine heterocycle takes place. As it has been shown earlier, the reaction of phosphorane 1 with PhC \equiv CH without salt 2 yields 2,6-dichloro-2-oxo-4-phenylbenzo[e]-1,2-oxaphosphorine, and the reaction with propargyl chloride yields 2,8-dichloro-2-oxo-4-chloromethylbenzo-[e]-1,2-oxaphosphorine. The structure of 2-chloro- and 2-hydroxy-derivatives 4, 5 was confirmed by ¹H, ¹³C,

The work is supported by the Russian Foundation for Basic Research (grant 00-03-32835).

Address correspondence to Vladmir F. Mironov, A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Arbuzov Str, 8, Kazan, 420088 Russia. E-mail: mironov@iopc.kcn.ru

 ^{31}P NMR. The location of the chlorine atom in seventh position was established on the basis of multiplicity of the C^5 , C^8 , C^{8a} signals in ^{13}C NMR spectra.

REFERENCE

V. F. Mironov, A. I. Konovalov, I. A. Litvinov, A. T. Gubaidullin, R. R. Petrov, A. A. Shtyrlina, T. A. Zyablikova, N. M. Azancheev, R. Z. Musin, and A. V. Il'yasov, Zh. Obshch. Khim. 68, 1482 (1998).